

Sniffer4D V2 적용분야

Sniffer4D V2, 어떤 센서를 장착에 따라 다양한 분야에 적용됩니다

PM10/ PM2.5 / PM1.0

VOCS / NH3 / H2S

음식물 쓰레기 처리장

정수 시설

축사

하천 부지

불법 소각

공단

Sniffer4D V2 = 하드웨어 센서 본체 + 데이타분석소프트웨어 + 옵션

센서 본체

Sniffer4D V2 The Multi-gas **Detection Hardware**

다양한 모바일 플랫폼과 호환되며 GPS정보와 지리정보 및 타임 스탬프, 미세먼지 외 가스 농도 데이터를 캡처하고 실시간으로 Sniffer4D Mapper로 데이터를 전송합니다.

소프트웨어

Sniffer4D Mapper -The Data Visualization and Analytics Software

Sniffer4D Mapper는 실시간으로 Sniffer4D로 부터 전송받은 데이터를 시각화 및 분석하고 직관적인 정보 (예: 2D / 3D 오염 분포, PDF 미션 보고서)를 제공합니다.

External Accessories (Option)

자동차 브라켓, 풍향, 풍속

Sniffer4D ₩2 주요 기능

- 다중 가스 감지 하드웨어
- 드론 및 지상 차량으로 운반하도록 설계
- 가스 및 입자 농도 캡처(최대 9개)
- LTE 네트워크를 통한 실시간 데이터 전송 → 4G / LTE / 3G / EDGE / GPRS 지원
- 매우 짧은 예열 시간
 연속측정의 효율성 증가
- API 를 통한 드론(DJI M300/210/200/600)통합
- [사진 A] 상태 LED
- [사진 B] 플러그 앤 플레이
- [사진 C] 확장 포트
- [사진 D] 전면 및 후면 경고등

Sniffer4D V2 제원

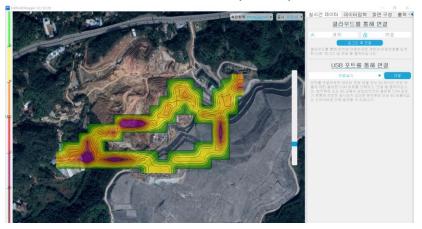
- 크기: 157 x 103 x 87mm
- 무게 : 400-500g
- IPX2등급(IPX 방수등급)
- EMI 방지 초경량 알루미늄 케이스
- 활성 공기 흡입구(Intake)
- SD 카드의 자동 데이터 백업

Sniffer4D Mapper-데이터 시각화 및 분석 소프트웨어

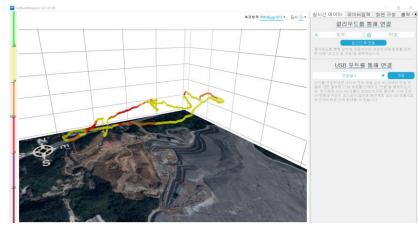
Sniffer4D Mapper는 실시간으로 Sniffer4D의 데이터를 시각화하고 분석하며 의사 결정자에게 직관적 인 정보 (예 : 2D / 3D 오염 분포, PDF 미션보고서)를 제공합니다.

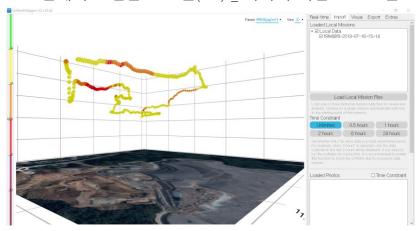
Sniffer4D 🔽 Mapper 주요 기능

- 실시간 대기측정 데이터 분석
- 2D 평면 오염분포 표현 / 2D 오염도 윤곽선 표현 / 3D 입체 오염분석도 표현
- 분석 및 재검토를 위한 과거 측정 데이터 로드
- 소프트웨어에 orthophoto (GeoTiff, WGS84)로드
- 위치 태그가 지정된 사진 업로드
- 자동 미션 보고서 (PDF) 생성
- 미션 파일을 데이터 시트 (CSV)로 내보내기
- 여러 Sniffer4D와 연결
- 3 개의 내장 데모 미션 (무인기 장착, 자동차 장착 및 헬리콥터 장착)
- 자동 소프트웨어 업데이트


3 가지 데이터 시각화 방법 지원

3 가지 데이터 시각화 방법 지원 : 2D 그리드 / 선형(Isoline)오염 농도 분포 맵, 3D 포인트 구름 오염 농도 분포 맵, 오염 분포 상황을 한눈에 알 수 있습니다.

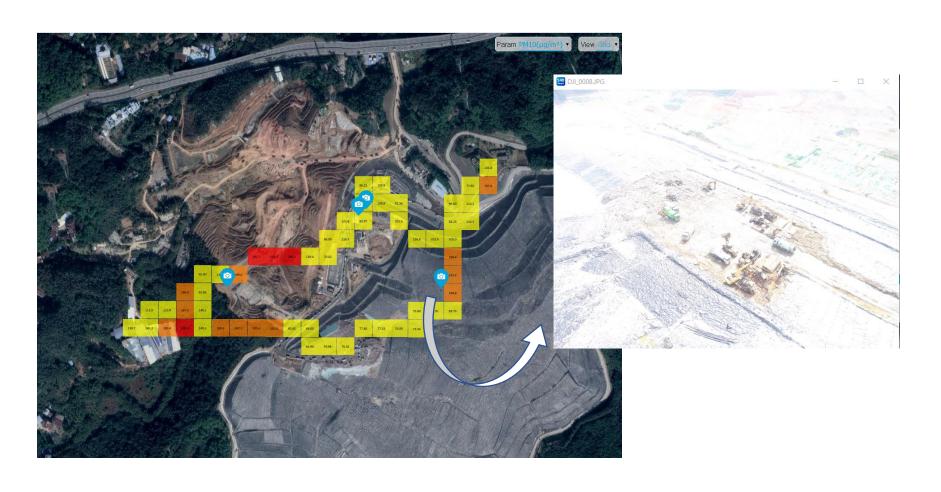

▼ 2D 그리드(Grid)


▼ 평면 오염분포도의 선형표현(Isoline)

▼ 3D 입체적 오염분포 표현(3D)



▼ 3D 입체적 오염분포 표현(3D) 다각화 시점으로 표현


카메라 화면의 실시간 디스플레이 지원

이 기능은 드론 또는 차량 카메라의 실시간 이미지를 Sniffer4D Mapper에서 직접 표현 할 수 있습니다 (왼쪽 하단). 측정자는 대기 오염원을 보다 효과적으로 찾을 수 있습니다.

실제 사진 가져 오기 지원

위치정보 태그를 사용하여 사진을 Sniffer4D Mapper에 삽입 할 수 있습니다. 이는 측정자가 대기 오염원의 증거에 대한 의사 결정의 기초로 활용할 수 있도록 도와 줍니다.

One Click!!! PDF 작업 보고서 / 내보내기 CSV 데이터 생성

분석 결과를 한 번의 클릭으로 작업보고서(PDF)를 바로 생성할 수 있습니다. 작업 데이터를 Matlab, MS Excel 및 기타 소프트웨어에 입력하여 데이터 분석 및 해석에 활용합니다.

PM₁₀ Concentration Distribution

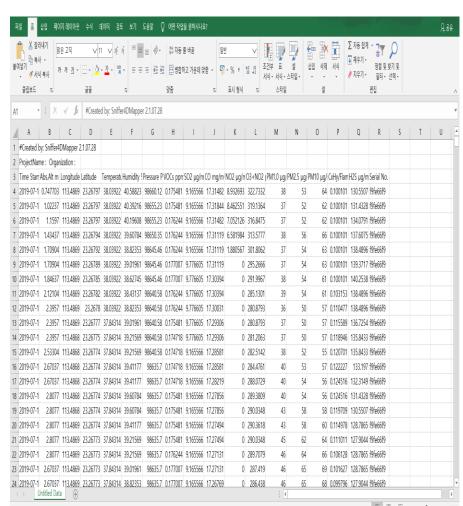
Mission Time: 2019/07/16 16:14:38 to 2019/07/16 16:30:19

Sniffer4D DeviceID: f9fe66f9 Modual ID: 100

Method: Laser Scattering Sample Dots: 941

Average Size of the Grid: 45.934 Meter X 45.934 Meter (2109.928 Square Meter)

The total detected area: 122375.836 (Square Meter)


Central Coordinates of the Area: 113.4828 E, 23.2663 N

PM10 Average Concentration: 114.908 µg/m3

PM₁₀ Maximum Grid Concentration: 334.727 μg/m³ (113.4819 E, 23.2663 N) PM₁₀ Minimum Grid Concentration: 66.944 μg/m³ (113.4828 E, 23.2642 N)

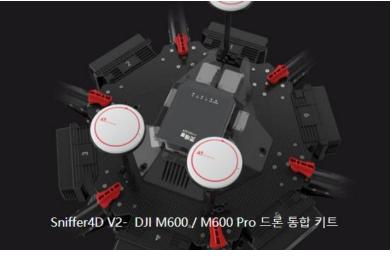
PM₁₀ Maximum Point Concentration: 364.000 μg/m³ (113.4869 E, 23.2679 N) 2019/07/16 16:30:05
PM₁₀ Minimum Point Concentration: 55.000 μg/m³ (113.4868 E, 23.2677 N) 2019/07/16 16:14:49

다수의 Sniffer4D의 동시측정에 대한 통합분석

여러 위치의 Sniffer4D로 부터 전송 받은 실시간 대기질 데이터를 동시에 분석 모니터링이 가능합니다.

Sniffer4D Mapper의 설치 권장사양

Sniffer4D를 구입하기 전에 Sniffer4D Mapper 소프트웨어를 다운로드하여 데모 작업을 실행하고 시스템 기능 및 작동 모드를 이해할 수 있도록 지원하여 드립니다.


Sniffer4D Mapper ® PC 버전 -Windows 7 64 비트 이상				
구분	최소 구성	권장 구성		
CPU	인텔 아톰 쿼드 코어	인텔 i5		
램	4GB	8GB		
화면	7 68p	1080p		
다운로드	별도 문의주시면 설치 파일을 보내드립니다.			
설치매뉴얼	https://www.soarability.tech/filedownload/140441			

Sniffer4D V2 Accessory 상세

Integration Kit : Sniffer4D와 드론의 견고한 통합

이외에 다양한 드론과의 통합 키트에 대한 자세한 내용은 당사에 문의하십시오.

가스 포집기(Air Gas Sampling Module)

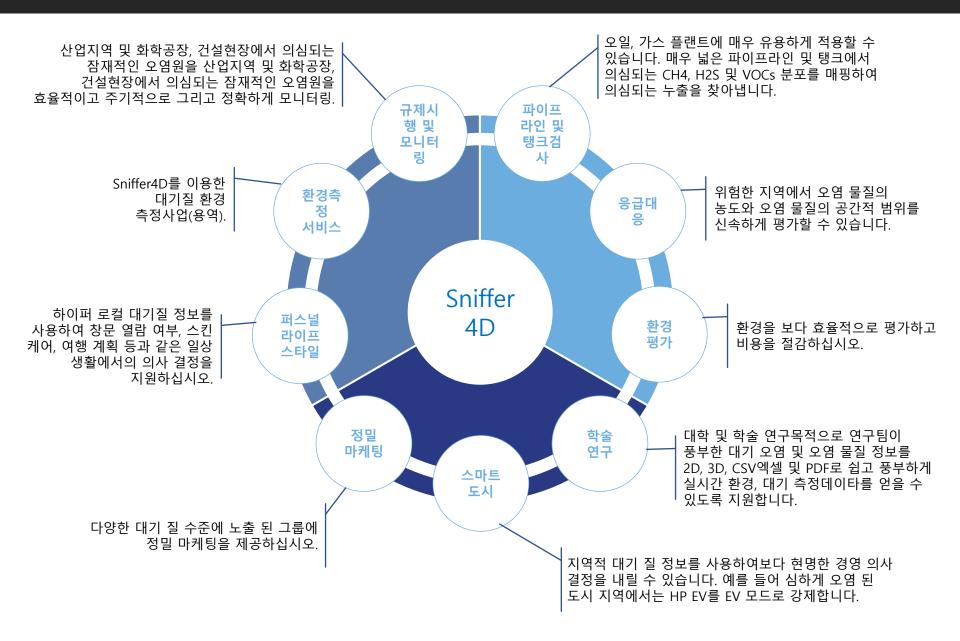
가스샘플링 모듈은 DJI Pilot / Lingsniff 지원 소프트웨어에 의해 제어됩니다. 다양한 용량의 에어백에 적용이 가능하고, 백의 공기 압력을 실시간으로 모니터링하여, 백이 가득 차면 자동으로 샘플링을 중단합니다. (M300 / M210 드론에 쉽게 고정 할 수 있습니다.)

Sniffer4D V2 Accessory 상세

풍향/풍속 감지 모듈

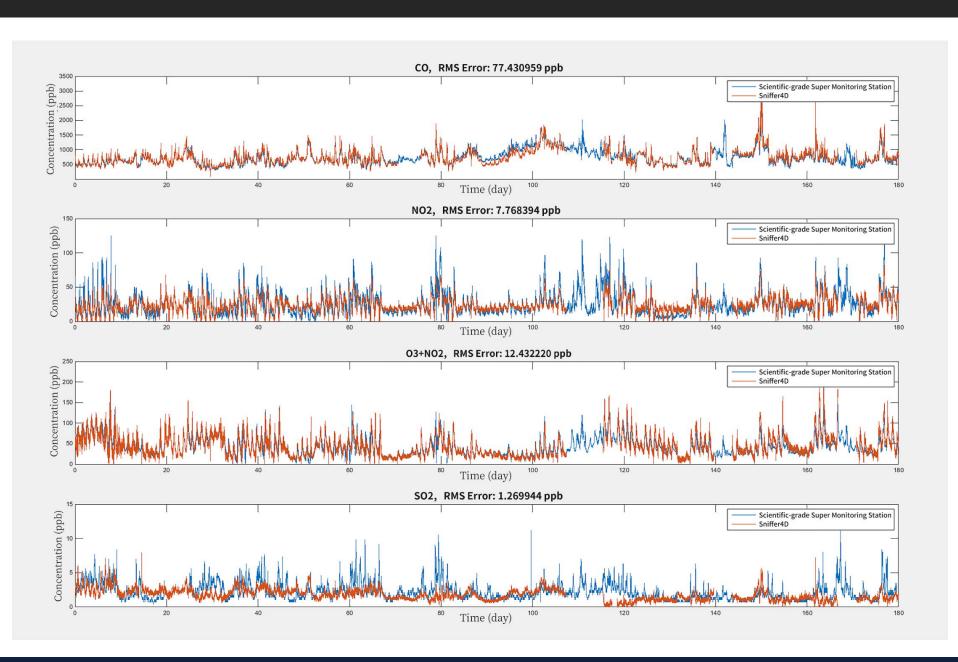
Sniffer4D V2에 풍향/풍속모듈을 장착하면 온도, 습도, 압력, 풍속 및 풍향과 같은 기상 요소와 여러 대기 오염 물질의 실시간 항공 모니터링을 실현할 수 있습니다. (M300 / M210 드론에 쉽게 고정 할 수 있습니다.)

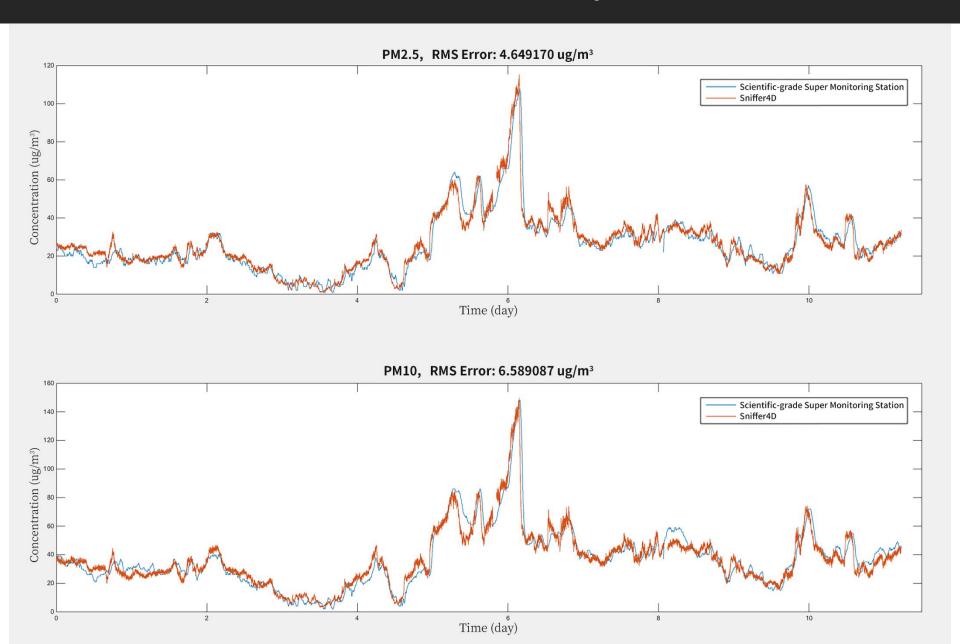
초음파 측정 원리, 가벼운 무게, 움직이는 부품 없음, 시작 풍속 제한 없음, 디버깅 필요 없음, 작동하려면 XT30 전원 코드와 Type-C 데이터 라인 만 연결하면됩니다.


UAV 변환 모션 보상 알고리즘, 자세 보상 알고리즘, 회전 모션 보상 알고리즘을 사용하여 3 축 풍속 측정 (수평 XY 축 + 수직 Z 축)을 지원하고 빠른 이동 중에 정확한 풍속 및 방향 정보를 얻습니다.

Sniffer4D V2 적용분야

Sniffer4D는 데이타신뢰성의 확보를 위하여 중국의 Jinan 대학과 공동으로 비교 테스트를 완료 하였습니다.(Jinan대의 보유장비 : Thermo Super Site)





데이터 신뢰성(Thermo 사의 SuperSite 비교 측정)

데이터 신뢰성(Thermo 사의 SuperSite 비교 측정)

Appendix 지원되는 센서(High Resolution Sensors)

센서명	Particulate Matter	O3+NO2	NO2	со	SO2	Total Suspended Particulate Matter
센싱범위	PM 10/2.5/1.0	High-resolution	High-resolution	High-resolution	High-resolution	PM100
마운트공간	2 spaces	1 space	1 space	1 space	1 space	4 spaces
Detection method	laser,light scattering	electrochemistry	electrochemistry	electrochemistry	electrochemistry	laser,light scattering
Particle counting Effectiveness	50% @ 0.3um, 98% @> 0.5um					
Target Gas	PM 10/2.5/1.0	O3+NO2	NO2	СО	SO2	particle size (1~100um)
Range	0~1000ug/m3	0~10ppm	0~10ppm	0~10ppm	0~15ppm	0~20ug/m3
Detection limit	1ug/m3	5ppb	5ppb	10ppb	5ppb	
Repeatability	<2% FS	<4% FS	<4% FS	<4% FS	<4% FS	
Overall response ti me(t90)	<10s		<60s(0~2ppm)	<20s(0~10ppm)	<40s(0~2ppm)	<6s
Theoretical Resolution			0.7ppb	0.7ppb	6ppb	1ug/m3
Sensitivity drift		-20~-40%/year (in labo ratory environment)	-20~-40%/year (in labo ratory environment)	<10%/year (in laborato ry environment)	<15%/year (in laborato ry environment)	
Zero drift		0~20ppb/year (in labor atory environment)	0~20ppb/year (in labor atory environment)	<±100ppb/year (in labo ratory environment)	<±20ppb/year (in labor atory environment)	
Estimated service Life	>36 months	>24 months	>24 months	>36 months	>36 months	>36 months
Operating Temperature		-30~40°C	-30~40°C	-30~50°C	-30~50°C	
Operating humidity		15-85%RH	15-85%RH	15-90%RH	15-90%RH	
Weight	29g	20g	20g	20g	20g	to be tested

Appendix 지원되는 센서(Wide Range Sensors)

센서명	Volatile Organic Co	SO2	CxHx (flammable ga	HCl	H2S	H2	NH3
센시경	mpounds (VOCs)	302	s)	псі	п23	ПZ	ипэ
Detection method	photoionization det ection (PID)	electrochemistry	non-dispersive infra red (NDIR)	electrochemistry	electrochemistry	electrochemistry	electrochemistry
Particle counting Effectiveness							
Target Gas	VOCs with ionizatio n potential energy < 10.6eV	SO2	hydrocarbons (flam mable gases)	HCI	H2S	H2	NH3
Range	0~50ppm (isobutyle ne)	0~100ppm	0~5%VOL (0~100%L EL) methane, or 0~2 %VOL propane	0~100ppm	0~50ppm	0~3000ppm	0~100ppm
Detection limit	1ppb	60ppb	0.01%	1ppm	20ppb	15ppm	5ppm
Repeatability	<4% FS	<4% FS	<2% FS	<4% FS	<4% FS	<5% FS	<5% FS
Accuracy			±10%				
Overall response time(t90)	<3 seconds (diffusio n mode)	<40 seconds (0~2ppm)	<30s	<200 seconds (0~25ppm)	<55 seconds (0~2ppm)	<55 seconds (0~400ppm)	<155 seconds (0~50ppm)
Theoretical Resolution	3.8 ppb	6ppb	0.01% (100ppm)	100ppb	1ppb	0.8ppm	0.3ppm
Time resolution	1Hz	1Hz	1Hz	1Hz	1Hz	1Hz	1Hz
Sensitivity drift		<15%/year (in labor atory environment)			<20%/year (in labor atory environment)		<3%/year (in laborat ory environment)
Zero drift		<±20ppb/year (in la boratory environme nt)	<±0.05% VOL/mont h				<±2ppm/year (in lab oratory environmen t)
Preheating stabilization time	~10 minutes		~1 minute				
Estimated service Life	5000 working hours	>36 months	>5 years	>24 months	>24 months	>24 months	>24 months
Operating Temperature	-40~55°C	-30~50°C	-20~50°C	-30~50°C	-30~50°C	-30~50°C	-30~50°C
Operating humidity	0-95%RH	15-90%RH	0-95%RH	15-90%RH	15-90%RH	15-90%RH	15-90%RH
Weight	11g	20g	22g	20g	20g	20g	20g

Appendix

데이터 신뢰성(인증의 획득_중국)

포항산업과학연구원

• 포스코플랜트 미세먼지 저감기술 연구 응용

Sniffer4D Configuration	도입배경	기대효과	
• Sensing Module - PM(1.0/2.5/100 - CO2 - SO2 - VOCs - NO2 - NO2 - O3 • 운영드론 - YUNEEC H520 - DJI M600 - Option - 차량용 마운팅 된 - 4G 광대역안테니	 고객사는 해안가에 위치한 철강제조사로 강풍에 의한 철광석과 석탄의 미세먼지 유발을 수치화 하여 저감조치 연구에 활용할 장비가 필요 됨 바람에 강하며 최대한 많은 대기성분을 측정해야함 대기 측정 센서의 데이타신뢰도를 증명 후 도입조건 	 Sniffer4D는 2019년 대기측정 센서의 데이터 신뢰도 검사를 모두 통과 해당 고객사 플랜트 내 미세먼지 저감연구에 활용되어 데이터 축적 중 저감기술의 효과를 검증하는 대기측정기로 활용 중 쉬운운영과 신속한 리포팅 기능으로 정보의 용이한 공유로 연구개발의 효율성 증가 	

데이터 신뢰성(중앙대학교)

중앙대학교

• 사회기반 스마트 도시 계획 연구의 활용

Sniffer4D Configurati	on	도입배경	기대효과	
- CO2 - SO2 • Option	EC H520	 중앙대학교 스마트도시 계획연구팀(이정우 교수)의 연구과제 드론운용의 비전문가로 드론운영의 어려움 보다 정확한 Hanshels 방식이 가능한 측정장비요구됨 기존의 고가 Hanshels장비의 한계(데아타 분석/축적이 불편, 다양한 대기성분 측정 불가 등등) 	 여성 연구원의 드론 비행교육을 통한 드론 측정 가능 다양한 대기 측정데이타의 축적과 분석으로 해외 연구발표 세미나에 활용 가벼운 중량(600g)으로 도보를 통한 대기측정가능 차량용 마운팅 키트를 이용한 차량 측정 가능 	

데이터 신뢰성(한국외대 환경공학과 도시/산업 환경 연구)

한국외국어대학교

• 도심 고정형 대기 측정기 위치 선정의 연구

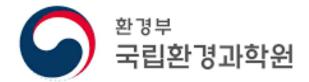
Sniffer4D(Configuration	도입배경	기대효과
• Sensing Module - PM(1.0/2.5/100 - CO2 - SO2 - NO2	 운영드론 DJI M210 Option 차량 마운팅 키트 대용량 파워뱅크 	 미세먼지의 측정을 휘한 고정형 측정기 위치선 정을 위한 연구에 활용(환경공학 이태형 교수) 6시간 이상의 장시간 측정 가능 요구 쉬운 분석과 가시적인 그래프 지원 요구 정확한 지도맵핑이 가능한 프로그램 요구 자체 캘리브레이션 기능 필요 	 Sniffer4D Mapper를 통한 분석과 리포팅 기능 만족 20000mAh 의 파워뱅크로 최대 9시간 연속측 정 가능 GNSS 를 통한 정확한 맵핑위치 선정 가능 자체 캘리브레이션을 통한 데이터 신뢰성의 손 쉬운 유지 가능

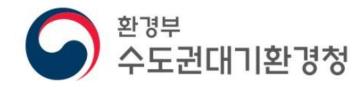
데이터 신뢰성(미세먼지 관리권역 지자체)

순천시청/밀양시청 고성군청/단양군청 외

- 대기오염원의 추적과 3차원 대기 측정
- 대기오염원 추적을 통한 단속 및 대기질 개선 계도

Sniffer4D Configuration	도입배경	기대효과
• Sensing Module - PM(1.0/2.5/100 - DJI M600 - CO2 - SO2 - VOCs - NO2 - Ogtion - 열화상 카메라 - O3	 미세먼지 관리권역으로 관리지역의 대기오염원의 신속한 감시 필요 대기환경 비전문가도 충분히 운영할 수 있는 쉬운 시스템 요구 열화상 카메라의 동시 장착이 가능한 모델 	 적은 인원으로 신속한 측정과 측정결과의 실시 간 확인 가능 Sniffer4D의 경량화 장점으로 열화상 카메라 동시 장착가능(동시에 다양한 임무수행 가능)





User List

コな己 GOSEONG-GUN

창녕군

